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Abstract

The steady-periodic regime of laminar mixed convection in an inclined channel is studied analytically, with the

following boundary conditions: the temperature of one channel wall is stationary, while the temperature of the other

wall is a sinusoidal function of time. Analytical expressions of the velocity field, of the temperature field, of the pressure

drop, of the friction factors, as well as of the Nusselt number at any plane parallel to the walls are determined. It is

found that, for every value of the Prandtl number greater than 0.277, there exists a resonance frequency which max-

imizes the amplitude of the friction factor oscillations at the unsteady-temperature wall. Moreover, for any plane which

lies between the midplane of the channel and the unsteady-temperature wall, every value of the Prandtl number yields a

resonance frequency which maximizes the amplitude of the Nusselt number oscillations.

� 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Laminar flow; Unsteady mixed convection; Inclined duct; Analytical methods

1. Introduction

Many analytical studies on fully developed laminar mixed convection in either vertical or inclined channels are

available in the literature. These studies refer to steady flows, and provide analytical solutions for different boundary

conditions. The viscous dissipation in the fluid is either neglected [1–5] or considered [6–9]. On the other hand, nu-

merical methods have been employed to investigate the steady-periodic natural convection in a square enclosure with

both the upper and the lower wall insulated, and the left vertical wall kept at a constant temperature. Two boundary

conditions for the right vertical wall have been considered: a uniform temperature which varies in time with a sinusoidal

law [10,11], a uniform heat flux which varies periodically in time with square-wave pulses [12,13]. In Refs. [11–13], a

resonance phenomenon has been predicted: the heat flux through a vertical surface fluctuates with an amplitude that,

for fixed values of the other parameters, reaches a maximum for a given value of the angular frequency, called reso-

nance frequency. In Refs. [10,11], different results have been obtained concerning the time-averaged heat transfer across

the enclosure. In Ref. [10] this quantity has been found to be rather insensitive to the time-dependent boundary

conditions. On the other hand, the results obtained in Ref. [11] show that a large-amplitude wall temperature oscillation

causes an increase of the time-averaged heat transfer rate and that the increase is maximum at a resonance frequency.

In this paper, the time-periodic laminar mixed convection in an inclined channel is studied analytically with the

following boundary conditions: the temperature of one wall is constant, while that of the other wall is a sinusoidal

function of time. Thus, the results obtained in Refs. [1–5] are extended to the case of steady-periodic conditions.

Moreover, the numerical investigations presented in Refs. [10–13] are complemented by the analytical study of similar

phenomena in a simpler geometry. The results allow one to describe the oscillations of the dimensionless velocity, of the

dimensionless temperature, of the dimensionless pressure drop, of the friction factors, of the dimensionless heat flux
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Nomenclature

A, B functions defined by Eq. (9)

D hydraulic diameter, 4L
f1 Fanning friction factor at the wall Y ¼ �L, defined in Eq. (21)

f2 Fanning friction factor at the wall Y ¼ L, defined in Eq. (21)

f �
1a, f

�
1b complex functions defined by Eq. (39)

f �
2a, f

�
2b complex functions defined by Eq. (40)

g gravitational acceleration

g magnitude of the gravitational acceleration

G dimensionless complex function defined by Eq. (32)

Gr Grashof number, defined in Eq. (11)

k thermal conductivity

L half of the channel width

Nu Nusselt number defined by Eq. (34)

Nu�, Nu�a, Nu
�
b dimensionless complex functions defined by Eqs. (35) and (36)

p pressure

P difference between the pressure and the hydrostatic pressure, p þ .0gðX cosu � Y sinuÞ
Pr Prandtl number, defined in Eq. (11)

q heat flux per unit area

Re real part of a complex number

Re Reynolds number, defined in Eq. (11)

t time

T temperature

T0 average temperature in a channel section

T1 temperature of the wall Y ¼ �L
T2 time-averaged temperature of the wall Y ¼ L
u dimensionless velocity defined in Eq. (11)

U velocity

U X-component of the fluid velocity

u�, u�a, u
�
b dimensionless complex functions defined by Eqs. (23) and (24)

U0 average velocity in a channel section

X, Y rectangular coordinates

y dimensionless coordinate defined in Eq. (11)

Greek symbols

a thermal diffusivity

b volumetric coefficient of thermal expansion

C dimensionless complex parameter defined in Eq. (31)

DT amplitude of the temperature oscillations at Y ¼ L
g dimensionless time, defined in Eq. (11)

h dimensionless temperature, defined in Eq. (11)

h�, h�
a, h�

b dimensionless complex functions defined by Eqs. (23) and (24)

k dimensionless pressure drop, defined in Eq. (11)

k�, k�
a, k�

b dimensionless complex functions defined in Eqs. (23) and (24)

l dynamic viscosity

m kinematic viscosity

n dimensionless parameter defined in Eq. (11)

. mass density

.0 mass density for T ¼ T0
u tilt angle

v dimensionless parameter defined in Eq. (11)

x angular frequency

X dimensionless angular frequency, defined in Eq. (11)
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through any plane parallel to the walls. It is found that, for sufficiently high values of the Prandtl number, there exists a

resonance frequency which maximizes the oscillation amplitude of the friction factor at the unsteady-temperature wall.

Moreover, for every value of the Prandtl number, a resonance frequency for the oscillation amplitude of the dimen-

sionless heat flux exists for any plane which lies between the midplane of the channel and the unsteady-temperature

wall, while the time-averaged heat flux is independent of the temperature oscillations.

2. Mathematical model

Let us consider the laminar flow of a Newtonian fluid in the gap between two infinitely-wide plane parallel walls. The

flow is assumed to be parallel such that U has the only non-vanishing component U along the X-axis. The axis or-

thogonal to the walls, the gravitational acceleration g and the X-axis lie on the same plane. The latter condition ensures

that the flow can be considered as two-dimensional, i.e. both the velocity field and the temperature field depend only on

two spatial coordinates. The system under consideration is sketched in Fig. 1, where the chosen coordinate axes ðX ; Y Þ
are drawn. Let us assume that the wall at Y ¼ �L is kept isothermal with a constant temperature T1, while the wall at
Y ¼ L is subjected to an oscillating temperature

T ðX ; L; tÞ ¼ T2 þ DT cosðxtÞ: ð1Þ

Moreover, heat flow is assumed to occur only in the transverse direction, so that oT=oX ¼ 0. The latter assumption is

conceivable since each wall is kept at a uniform temperature. The Boussinesq approximation is invoked, so that U is a

solenoidal field and, as a consequence, oU=oX ¼ 0. A steady mass flow rate is prescribed; therefore the average velocity

in a channel section, defined as

U0 ¼
1

2L

Z L

�L
U dY ; ð2Þ

is time independent.

The equation of state, . ¼ .ðT Þ is considered as linear,

. ¼ .0½1� bðT � T0Þ�; ð3Þ

where T0 is an average temperature both with respect to the interval �L6 Y 6 L and to the period 06 t6 2p=x, namely

T0 ¼
x
4pL

Z 2p=x

0

dt
Z L

�L
dY T : ð4Þ

Obviously, since oT=oX ¼ 0, the reference temperature T0 is a constant. According to the Boussinesq approximation,

the momentum balance equation yields, along the X and Y axes,

Fig. 1. Drawing of the channel and of the coordinate axes.
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.0

oU
ot

¼ .0gbðT � T0Þ cosu � oP
oX

þ l
o2U
oY 2

; ð5Þ

.0gbðT � T0Þ sinu þ oP
oY

¼ 0; ð6Þ

where P ¼ p þ .0gðX cosu � Y sinuÞ. If both sides of Eq. (5) are derived with respect to X, one obtains

o2P
oX 2

¼ 0: ð7Þ

Moreover, if both sides of Eq. (6) are derived with respect to X, one obtains

o2P
oXoY

¼ 0: ð8Þ

It is easily verified that Eqs. (8) and (9) imply the existence of two functions AðY ; tÞ and BðtÞ such that

P ðX ; Y ; tÞ ¼ AðY ; tÞ � BðtÞX : ð9Þ

The energy balance equation is given by

oT
ot

¼ a
o2T
oY 2

: ð10Þ

Let us define the dimensionless quantities

h ¼ T � T0
DT

; u ¼ U
U0

; y ¼ Y
D
; g ¼ xt; k ¼ D2B

lU0

; X ¼ xD2

m
; Pr ¼ m

a
; Re ¼ U0D

m
; Gr ¼ gbDT D3 cosu

m2
;

v ¼ T2 � T1
DT

; n ¼ T1 � T0
DT

; ð11Þ

where D ¼ 4L is the hydraulic diameter. By employing Eqs. (9) and (11), Eqs. (5) and (10) can be rewritten as

X
ou
og

¼ Gr
Re

h þ k þ o2u
oy2

; ð12Þ

oh
og

¼ 1

XPr
o2h
oy2

: ð13Þ

The no slip condition at the walls implies that

uð�1=4; gÞ ¼ 0 ¼ uð1=4; gÞ; ð14Þ

while the dimensionless thermal boundary conditions are

hð�1=4; gÞ ¼ n; ð15Þ

hð1=4; gÞ ¼ n þ v þ cos g: ð16Þ

Eqs. (2) and (4) imply the following constraints on the functions uðy; gÞ and hðy; gÞ:
Z 1=4

�1=4

uðy; gÞdy ¼ 1

2
; ð17Þ

Z 2p

0

dg
Z 1=4

�1=4

dy hðy; gÞ ¼ 0: ð18Þ

Obviously, Eq. (17) yields the further constraint

Z 1=4

�1=4

ouðy; gÞ
og

dy ¼ 0: ð19Þ

On account of Eq. (19), an integration of Eq. (12) with respect to y in the range [)1/4, 1/4] yields
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ou
oy

����
y¼�1=4

� ou
oy

����
y¼1=4

¼ k
2
þ Gr

Re

Z 1=4

�1=4

hðy; gÞdy: ð20Þ

The friction factors f1 and f2 at the walls Y ¼ �L and Y ¼ L respectively are defined as

f1 ¼
2m
U 2

0

oU
oY

����
Y¼�L

¼ 2

Re
ou
oy

����
y¼�1=4

; f2 ¼ � 2m
U 2

0

oU
oY

����
Y¼L

¼ � 2

Re
ou
oy

����
y¼1=4

: ð21Þ

On account of Eq. (20), the friction factors and the parameter k are related as follows:

ðf1 þ f2ÞRe ¼ k þ 2
Gr
Re

Z 1=4

�1=4

hðy; gÞdy: ð22Þ

3. Analytical solution, for steady periodic regime

Since Eqs. (12)–(18) are linear, one can define the complex valued functions u�ðy; gÞ, h�ðy; gÞ, k�ðgÞ, which fulfil the

equations

X
ou�

og
¼ Gr

Re
h� þ k� þ o2u�

oy2
;

oh�

og
¼ 1

XPr
o2h�

oy2
;

u�ð�1=4; gÞ ¼ 0 ¼ u�ð1=4; gÞ;
h�ð�1=4; gÞ ¼ n; h�ð1=4; gÞ ¼ n þ v þ eig;Z 1=4

�1=4

u�ðy; gÞdy ¼ 1

2
;

Z 2p

0

dg
Z 1=4

�1=4

dy h�ðy; gÞ ¼ 0;

ð23Þ

and are such that u ¼ Reðu�Þ, h ¼ Reðh�Þ, k ¼ Reðk�Þ. In steady-periodic regime, a solution of Eq. (23) can be written

in the form

u�ðy; gÞ ¼ u�aðyÞ þ
Gr
Re

u�bðyÞeig;

h�ðy; gÞ ¼ h�
aðyÞ þ h�

bðyÞeig;

k�ðgÞ ¼ k�
a þ

Gr
Re

k�
be

ig:

ð24Þ

Due to the linearity of Eq. (23), if one substitutes Eq. (24) into Eq. (23) one obtains two distinct boundary value

problems. The first is given by

d2u�a
dy2

þ Gr
Re

h�
a þ k�

a ¼ 0;

d2h�
a

dy2
¼ 0;

u�að�1=4Þ ¼ 0 ¼ u�að1=4Þ;
h�
að�1=4Þ ¼ n; h�

að1=4Þ ¼ n þ v;Z 1=4

�1=4

u�aðyÞdy ¼
1

2
;

Z 1=4

�1=4

h�
aðyÞdy ¼ 0;

ð25Þ
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while the second is given by

d2u�b
dy2

� iXu�b þ h�
b þ k�

b ¼ 0;

d2h�
b

dy2
� iXPrh�

b ¼ 0;

u�bð�1=4Þ ¼ 0 ¼ u�bð1=4Þ;
h�
bð�1=4Þ ¼ 0; h�

bð1=4Þ ¼ 1;Z 1=4

�1=4

u�bðyÞdy ¼ 0:

ð26Þ

The differential equations and the boundary conditions which appear in Eq. (25) yield the distributions u�aðyÞ and h�
aðyÞ

as functions of the unknown parameters k�
a and n. Then, these parameters can be determined by employing the integral

constraints on u�aðyÞ and h�
aðyÞ given in Eq. (25). For instance, the constraint on h�

aðyÞ yields n ¼ �v=2 which, on account

of Eq. (11), implies T0 ¼ ðT1 þ T2Þ=2. The solution of Eq. (25) is as follows:

h�
aðyÞ ¼ 2vy; k�

a ¼ 48;

u�aðyÞ ¼
1

48
ð1� 16y2Þ 72

�
þ v

Gr
Re

y
�
:

ð27Þ

With reference to Eq. (26), the differential equations and the boundary conditions yield the distributions u�bðyÞ and h�
bðyÞ

as functions of the unknown parameter k�
b. The latter parameter is determined by means of the integral constraint which

appears in Eq. (26), so that the solution of this equation is given by

h�
bðyÞ ¼ ðeC � 1Þ�1

exp
3

4

���
þ y
�

C

�
� exp

1

4

��
� y
�

C

��
; ð28Þ

k�
b ¼ 2 1

��
� exp

C
2

�
þ C

2
ffiffiffiffiffi
Pr

p
�� ffiffiffiffiffi

Pr
p


� 1
�
þ eC=2

�
� exp

C

2
ffiffiffiffiffi
Pr

p
� �� ffiffiffiffiffi

Pr
p


þ 1
��

1

�
þ exp

C
2

� ���1

ðPr � 1Þ�1


 4
ffiffiffiffiffi
Pr

p�
þ C � exp

C

2
ffiffiffiffiffi
Pr

p
� �

4
ffiffiffiffiffi
Pr

p

� C

���1

: ð29Þ

u�bðyÞ ¼
Pr

C2ðPr � 1Þ
exp

�
� 2

�
þ 1ffiffiffiffiffi

Pr
p

�
yC
�
eC
�

� 1
�1

exp
Cffiffiffiffiffi
Pr

p
� ��

� 1

��1

GðyÞ: ð30Þ

In Eqs. (28)–(30), the parameter C is defined as

C ¼
ffiffiffiffiffiffiffiffiffiffi
iXPr

p
; ð31Þ

while the function GðyÞ is given by

GðyÞ ¼ exp
3C
4

�
þ 3

�
þ 1ffiffiffiffiffi

Pr
p

�
yC
�
� exp

C
4

�
þ 1

�
þ 1ffiffiffiffiffi

Pr
p

�
yC
�
þ exp

C
4

�
þ Cffiffiffiffiffi

Pr
p þ 1

�
þ 1ffiffiffiffiffi

Pr
p

�
yC
�

� exp
3C
4

�
þ Cffiffiffiffiffi

Pr
p þ 3

�
þ 1ffiffiffiffiffi

Pr
p

�
yC
�
þ k�

bðPr � 1Þ 1
�

� eC

exp 2

��
þ 1ffiffiffiffiffi

Pr
p

�
yC
�
� k�

bðPr � 1Þ


 exp
1þ 8 1þ

ffiffiffiffiffi
Pr

p� 
y

4
ffiffiffiffiffi
Pr

p C

" #
� k�

bðPr � 1Þ exp
1þ 1þ 2

ffiffiffiffiffi
Pr

p� 
yffiffiffiffiffi

Pr
p C

" #
þ k�

bðPr � 1Þ exp 4
ffiffiffiffiffi
Pr

p
þ 1

4
ffiffiffiffiffi
Pr

p C

�

þ 2

ffiffiffiffiffi
Pr

p
þ 1ffiffiffiffiffi
Pr

p yC
�
þ k�

bðPr � 1Þ exp
ffiffiffiffiffi
Pr

p
þ 1

� 
C þ 2

ffiffiffiffiffi
Pr

p
þ 1

� 
yCffiffiffiffiffi

Pr
p

" #
þ k�

bðPr � 1Þ exp 3C

4
ffiffiffiffiffi
Pr

p
�

þ 2yC
�

� k�
bðPr � 1Þ exp C

�
þ 3C

4
ffiffiffiffiffi
Pr

p þ 2yC
�
þ k�

bðPr
�

� 1Þ � 1
�
exp

3C þ 8
ffiffiffiffiffi
Pr

p
þ 1

� 
yC

4
ffiffiffiffiffi
Pr

p
" #

þ k�
bðPr

�
� 1Þ � 1

�


 exp C

�
þ C

4
ffiffiffiffiffi
Pr

p þ 2yC
�
þ 1
�

� k�
bðPr � 1Þ

�
exp C

�
þ 3C

4
ffiffiffiffiffi
Pr

p þ 2

ffiffiffiffiffi
Pr

p
þ 1ffiffiffiffiffi
Pr

p yC
�
þ 1
�

� k�
bðPr � 1Þ

�

 exp

C

4
ffiffiffiffiffi
Pr

p
�

þ 2yC
�
: ð32Þ
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By employing Eq. (11), the heat flux per unit area can be written as

q ¼ k
oT
oY

¼ kDT
D

oh
oy

: ð33Þ

In analogy with the literature [10–13], we will define a dimensionless heat flux per unit area, called Nusselt number, as

follows:

Nu ¼ qD
kDT

¼ oh
oy

¼ Re
oh�

oy

� �
¼ ReðNu�Þ; ð34Þ

where, on account of Eq. (24), Nu� is defined as

Nu� ¼ oh�
a

oy
þ oh�

b

oy
eig ¼ Nu�a þ Nu�be

ig: ð35Þ

As a consequence of Eqs. (27) and (28), the quantities Nu�a and Nu�b employed in Eq. (35) are given by

Nu�a ¼ 2v;

Nu�b ¼ CðeC � 1Þ�1
exp

3

4

���
þ y
�

C

�
þ exp

1

4

��
� y
�

C

��
:

ð36Þ

Eqs. (35) and (36) point out that the mean value in a period of the Nusselt number is given by Nu�a and depends only on

v, i.e., is independent of y, X and Pr. On the contrary, the amplitude of the fluctuations of the Nusselt number is given

by the modulus of Nu�b and depends on y and on the product XPr.
Finally, Eqs. (21) and (24) allow one to express the quantities f1Re and f2Re as

f1Re ¼ 2Re
ou�a
oy

����
y¼�1=4

 
þ Gr

Re
ou�b
oy

����
y¼�1=4

eig

!
¼ Re f �

1aRe
�

þ Gr
Re

f �
1bRee

ig

�
; ð37Þ

f2Re ¼ �2Re
ou�a
oy

����
y¼1=4

 
þ Gr

Re
ou�b
oy

����
y¼1=4

eig

!
¼ Re f �

2aRe
�

þ Gr
Re

f �
2bRee

ig

�
; ð38Þ

where f �
1aRe, f

�
1bRe, f

�
2aRe and f �

2bRe are given by

f �
1aRe ¼ 2

ou�a
oy

����
y¼�1=4

; f �
1bRe ¼ 2

ou�b
oy

����
y¼�1=4

; ð39Þ

f �
2aRe ¼ �2

ou�a
oy

����
y¼1=4

; f �
2bRe ¼ �2

ou�b
oy

����
y¼1=4

: ð40Þ

Eqs. (27), (39) and (40) yield

f �
1aRe ¼ 24� v

12

Gr
Re

;

f �
2aRe ¼ 24þ v

12

Gr
Re

:

ð41Þ

The expressions of f �
1bRe and f �

2bRe can be obtained from Eqs. (30), (39) and (40), namely

f �
1bRe ¼

2Pr

C2ðPr � 1Þ
exp 2

��
þ 1ffiffiffiffiffi

Pr
p

�
C
4

�
eC
�

� 1
�1

exp
Cffiffiffiffiffi
Pr

p
� ��

� 1

��1


 dGðyÞ
dy

����
y¼�1=4

"
� 2

�
þ 1ffiffiffiffiffi

Pr
p

�
CGð � 1=4Þ

#
; ð42Þ

f �
2bRe ¼ � 2Pr

C2ðPr � 1Þ
exp

�
� 2

�
þ 1ffiffiffiffiffi

Pr
p

�
C
4

�
eC
�

� 1
�1

exp
Cffiffiffiffiffi
Pr

p
� ��

� 1

��1


 dGðyÞ
dy

����
y¼1=4

"
� 2

�
þ 1ffiffiffiffiffi

Pr
p

�
CGð1=4Þ

#
: ð43Þ
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4. Discussion of the results: pressure drop, friction factors and Nusselt number

As is shown by Eq. (27), the steady part k�
a of the complex pressure drop coefficient k� is a real constant and coincides

with the dimensionless pressure drop coefficient k obtained in the analysis of the steady case [1,5,9]. Moreover, Eqs. (24)

and (29) show that the oscillating part is proportional to Gr=Re and to the complex quantity k�
b, which depends on X

and Pr. Since the dimensionless pressure drop coefficient k coincides with the real part of k�, the amplitude of the

oscillations of k is equal to jk�
bjGr=Re. Plots of the modulus of k�

b versus X in the range 06X6 100 are reported in Fig. 2,

for Pr ¼ 0:7, 7 and 100. The figure shows that the amplitude of the fluctuations of the pressure drop coefficient k is a

decreasing function of X, for every value of Pr, and that the decrease is faster for higher values of Pr. As it can be

inferred from Eqs. (37) and (38), the amplitudes of the oscillations of the friction factors f1 and f2 are given by

jf �
1bGr=Rej and jf �

2bGr=Rej, respectively. The amplitude of the oscillations of f1Re2=Gr, i.e. jf �
1bRej, is a decreasing

function of X for every value of Pr, as is shown in Fig. 3, where the modulus of f �
1bRe is plotted versus X for Pr ¼ 0:7, 7

and 100, in the range 06X6 100. On the other hand, the amplitude of the oscillations of f2Re2=Gr, i.e. jf �
2bRej, is not a

decreasing function of X. For a given value of the Prandtl number there exists a value of X which maximizes the

modulus of f �
2bRe and thus represents a resonance frequency for the oscillations of the friction factor at the wall Y ¼ L.

This result is illustrated in Fig. 4, where the modulus of f �
2bRe is plotted versus X in the range 06X6 100, for Pr ¼ 0:7, 7

and 100. The figure shows that the resonance frequency is a decreasing function of Pr and reaches a very low value for

Pr ¼ 100. Indeed, the values of the resonance frequency for the plots reported in Fig. 4 are, with an accuracy of four

digits: X ¼ 63:92 for Pr ¼ 0:7, X ¼ 10:22 for Pr ¼ 7, X ¼ 0:7440 for Pr ¼ 100. Table 1 provides resonance values of X
which correspond to some values of Pr ranging from 0.3 to 1000. This table shows that the resonance value of X is not a

monotonic function of Pr in the range 0:36 Pr6 0:5. It is interesting to note that no resonance frequency exists if

Pr < 0:277. Indeed, if Pr < 0:277, jf �
2bRej is a strictly decreasing function of X.

The Nusselt number represents the dimensionless heat flux per unit area through a vertical plane and is defined for

every value of y. As is shown by Eqs. (35) and (36), the Nusselt number is composed of a steady part, Nu�a, which is a

real constant, and an oscillating part whose amplitude is the modulus of the complex number Nu�b, which depends on y

and on the product XPr. The time-averaged value of the Nusselt number coincides with Nu�a, and is independent of y.

Fig. 2. Plots of the modulus of k�
b versus X in the range 06X6 100, for Pr ¼ 0:7, 7 and 100.

Fig. 3. Plots of the modulus of f �
1bRe versus X in the range 06X6 100, for Pr ¼ 0:7, 7 and 100.
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The modulus of Nu�b at the steady-temperature wall ðy ¼ �0:25Þ, at y ¼ �0:05, and at the midplane of the channel

ðy ¼ 0Þ is plotted versus XPr in Fig. 5, in the range 06XPr6 400. As is illustrated by this figure, the amplitude of the

oscillations of the Nusselt number is a decreasing function of XPr in the whole interval �0:256 y6 0. On the contrary,

in the open interval 0 < y < 0:25, for every value of y there exists a value of XPr which maximizes the modulus of Nu�b,
i.e. there exists a resonance frequency for the fluctuations of the Nusselt number which is proportional to the inverse of

Pr. In this interval, the value of XPr which maximizes the modulus of Nu�b is an increasing function of y. Finally, at the

right wall, the modulus of Nu�b is an increasing function of XPr, and no resonance occurs. These phenomena are

illustrated in Figs. 6 and 7. In Fig. 6, plots of the modulus of Nu�b versus XPr are reported in the range 06XPr6 1200,

for y ¼ 0:1, 0.17 and 0.2. For the plots reported in Fig. 6, the resonance frequencies correspond to XPr ¼ 93:61, 312.7
and 800.0. In Fig. 7, plots of the modulus of Nu�b versus XPr are reported in the range 06XPr6 40,000, for y ¼ 0:22,

Fig. 5. Plots of the modulus of Nu�b versus XPr in the range 06XPr6 400, for y ¼ �0:25, �0.05 and 0.

Table 1

Values of X which correspond to resonances of f2Re

Pr X Pr X

0.3 55.92 1.2 45.98

0.32 66.65 1.5 39.17

0.34 71.89 2.0 31.33

0.36 74.61 3.0 22.27

0.38 75.93 4.0 17.23

0.4 76.43 5.0 14.03

0.5 73.78 10.0 7.253

0.6 68.85 20.0 3.680

0.7 63.92 50.0 1.484

0.8 59.44 100.0 0.7440

0.9 55.45 500.0 0.1491

1.0 51.92 1000.0 0.07456

Fig. 4. Plots of the modulus of f �
2bRe versus X in the range 06X6 100, for Pr ¼ 0:7, 7 and 100.
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0.24, and 0.25 (right wall). The first plot presents a resonance frequency for XPr ¼ 2222, the second presents a reso-

nance frequency for XPr ¼ 20,000, while the third presents no resonance. Table 2 provides resonance values of the

product XPr for the Nusselt number, in the open interval 0 < y < 0:25. This table shows that the resonance value of

XPr increases monotonically with y.

5. Discussion of the results: velocity and temperature distributions

The steady part u�a of the dimensionless velocity is a real function of y which agrees with the dimensionless velocity

profile obtained in the analysis of the steady case [1,5,9].

Fig. 6. Plots of the modulus of Nu�b versus XPr in the range 06XPr6 1200, for y ¼ 0:1, 0.17 and 0.2.

Fig. 7. Plots of the modulus of Nu�b versus XPr in the range 06XPr6 40,000, for y ¼ 0:22, 0.24 and 0.25.

Table 2

Values of the product XPr which correspond to resonances of Nu

y XPr y XPr

0.005 13.27 0.13 135.3

0.01 30.40 0.14 162.6

0.015 38.75 0.15 199.3

0.02 44.60 0.16 247.3

0.025 49.19 0.17 312.7

0.03 53.03 0.18 408.1

0.04 59.40 0.19 555.6

0.06 69.82 0.2 800.0

0.08 80.16 0.21 1250.0

0.1 93.61 0.22 2222.2

0.11 103.2 0.23 5000.0

0.12 116.3 0.24 20000.0
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The oscillating part is proportional to Gr=Re and to the complex function u�b. Obviously, the modulus of ðGr=ReÞu�b
coincides with the amplitude of the local dimensionless-velocity oscillations. Plots of ju�bj versus y for X ¼ 1 are reported

in Fig. 8, for Pr ¼ 0:7 and 100. The plot for Pr ¼ 7 is not reported because, for X6 1, it is indistinguishable from that

for Pr ¼ 0:7. The figure shows that, for Pr ¼ 0:7, the amplitude of the dimensionless velocity oscillations is almost

exactly symmetric with respect to the midplane of the channel, is very close to zero at the midplane, and has two

maxima for y ¼ �0:1443 and 0.1443. On the other hand, for Pr ¼ 100, the amplitude of the dimensionless velocity

oscillations is not symmetric with respect to the midplane and differs appreciably from zero at this plane. Plots of the

modulus of u�b versus y for X ¼ 10 are reported in Fig. 9, for Pr ¼ 0:7, 7 and 100. The plot for Pr ¼ 0:7 in Fig. 9 is very

similar to that for the same value of Pr and X ¼ 1, reported in Fig. 8. The plot for Pr ¼ 7 in Fig. 9 is similar to the plot

in Fig. 8 which refers to X ¼ 1 and Pr ¼ 100. The plot for Pr ¼ 100 presents an average value much lower than that of

Fig. 8. Plots of the modulus of u�b versus y with X ¼ 1, for Pr ¼ 0:7 and 100.

Fig. 9. Plots of the modulus of u�b versus y with X ¼ 10, for Pr ¼ 0:7, 7 and 100.

Fig. 10. Plots of the modulus of u�b versus y with X ¼ 100, for Pr ¼ 0:7, 7 and 100.
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the other plots of the figure, and an absolute maximum rather close to the oscillating-temperature wall ðy ¼ 0:1946Þ.
Finally, plots of the modulus of u�b versus y for X ¼ 100 are reported in Fig. 10, for Pr ¼ 0:7, 7 and 100. The figure

shows that, for X ¼ 100, the amplitude of the dimensionless velocity oscillations is a strongly decreasing function of Pr

at any position, obviously except at the walls, where velocity oscillations cannot occur. In particular, for Pr ¼ 100 the

amplitude of the velocity oscillations is very low throughout the channel.

As is shown by Eq. (27), the steady part h�
a of the dimensionless temperature is a real linear function of y, as in the

steady case [1,5,9]. The oscillating part is proportional to h�
b, which, as is shown by Eq. (28), is a complex function of y

and of the product XPr. Plots of the modulus of h�
b versus y for XPr ¼ 10, 100 and 1000 are reported in Fig. 11. The

figure shows that, for XPr6 10, the amplitude of the temperature oscillations looks like a linear function of y. On the

other hand, when the value of XPr becomes higher and higher, the temperature oscillations tend to be sensible only in a

narrow region of the channel adjacent to the wall Y ¼ L.

6. Conclusions

The steady-periodic mixed convection in an inclined parallel-plate channel has been investigated by an analytical

solution of the governing balance equations, under the following assumptions: the flow is laminar and parallel, the heat

flux is transverse to the flow. It has been pointed out that the latter assumption is compatible with the thermal boundary

conditions prescribed: both walls have a uniform temperature, which is stationary on one wall and sinusoidally time-

varying on the other wall. The temperature distribution has been evaluated by solving the energy balance equation; then

it has been substituted in the momentum balance equation. The solution of the latter equation has provided both the

velocity distribution and the streamwise pressure drop. It has been shown that four dimensionless parameters must be

fixed to determine the solution: the ratio between the Grashof number and the Reynolds number Gr=Re, the Prandtl

number Pr, the temperature difference ratio v and the dimensionless frequency X.

The most interesting features of the solution are the following:

• The oscillation amplitude of the dimensionless local velocity can be expressed as jGr=Rejju�bj, where ju�bj is a function

of Pr, X and of the position y. The oscillation amplitude of the dimensionless pressure drop is given by jGr=Rejjk�
bj,

where jk�
bj is a function of Pr and X. The oscillation amplitude of the dimensionless local temperature can be ex-

pressed as a function of the product XPr and of the position y. Since X and Pr do not depend on the average fluid

velocity U0, all the above mentioned amplitudes are independent of the mean flow direction (U0 > 0 or U0 < 0).

• For every value of Pr, the oscillation amplitudes of the dimensionless pressure drop k and of the friction factor f1Re
decrease monotonically with X. On the other hand, if PrP 0:277, the oscillation amplitude of the friction factor f2Re
is not a monotonic function of X and a resonance frequency exists for any given value of Pr. If Pr < 0:277, the os-
cillation amplitude of the friction factor f2Re decreases monotonically with X.

• The oscillation amplitude of dimensionless heat flux, i.e. of the Nusselt number Nu, depends on the dimensionless

coordinate y and on the product XPr. If �0:25 < y < 0, i.e. in the half-channel next to the steady-temperature wall,

the oscillation amplitude of Nu is a monotonically decreasing function of XPr. On the other hand, if 0 < y < 0:25,
i.e. in the half-channel next to the oscillating-temperature wall, the oscillation amplitude of Nu is not a monotonic

function of XPr, and a resonance value of XPr exists for any given y.

Fig. 11. Plots of the modulus of h�
b versus y for XPr ¼ 10, 100 and 1000.
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